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HEAT-TRANSFER EFFECTS OF SURFACE PROTUBERANCES
ON THE X-15 AIRPLANE*

By Joe D. Watts and Frank V. Olinger
Flight Research Center

SUMMARY

The heat-transfer effects of flow separation forced by two types of surface protu-
berances on the fuselage of the X-15 airplane were measured in flight at Mach numbers
near 5 and local Reynolds numbers of approximately 5 x 107. The two protuberance
configurations were a 0.20-inch (0. 51-centimeter) forward-and-aft-facing step and a
sine wave of 0. 20-inch- (0, 51-centimeter-) amplitude at a right angle to the stream
direction. Heat-transfer coefficients were calculated from measured skin temperatures
across the protuberances and normalized to measured smooth-panel data. The variation
of the heat-transfer coefficient across the protuberances ranged from 0. 09 to 2. 23 times
the smooth-surface value. Flight data were compared with wind-tunnel data measured
in turbulent flow.

INTRODUCTION

The adverse heating effects of surface protuberances such as panel-edge
discontinuities, skin buckles, cavities, and corrugations can be of great importance in
the design of hypersonic vehicles. Consequently, the local aerodynamic-heating effects
of separated flow forced by surface protuberances have been the subject of many wind-
tunnel investigations in recent years. A wide variety of surface-protuberance
configurations has been investigated but most of the data has been obtained in laminar
flow at low stagnation temperatures and low Reynolds numbers.

One of the primary purposes of flight tests on the X-15 airplane was to extend the
data beyond the conditions in wind-tunnel tests such as those discussed in references 1
and 2. This paper presents the results of flight heat-transfer measurements on two
protuberance configurations: a forward-and-aft-facing step at a Mach number of 4. 6
and a Reynolds number of 6 x 107, and a sine-wave corrugation at a right angle to the
stream direction at a Mach number of 5.2 and a Reynolds number of 4 x 107. The ratio

of boundary-layer thickness to protuberance height ;37 was 14 on the step test and 18 on

the wave test, in contrast to most wind-tunnel data, which are in the S— range of 0,25
to 2.00.

*Title, unclassified.



SYMBOLS

The units used for physical quantities in this paper are given both in U. 8. Customary
Units and the International System of Units (SI). Factors relating the two systems are
presented in the appendix.

Cp,w

specific heat of panel material, 0.117 British thermal units per
pound (mass)-degrees Rankine (489 joules per kilogram-degrees
Kelvin)

radiation geometry factor, 1.0
altitude, feet (meters)

heat-transfer coefficient, British thermal units per foot2-second-
degrees Rankine (joules per meter2 -second-degrees Kelvin)

thermal conductivity, British thermal units per foot-second-degrees
Rankine (joules per meter-second-degrees Kelvin)

Mach number
pVZ S
i)

local Reynolds number,

absolute pressure, pounds per foot? (newtons per meterz)

flow length measured from nose of fuselage, feet (meters)

temperature, degrees Rankine (degrees Kelvin)
recovery temperature, degrees Rankine (degrees Kelvin)
material thickness, feet (meters)

velocity, feet per second (meters per second)

distance along test panel, inches (centimeters)

protuberance height, inches (centimeters)

angle of attack, degrees



b boundary-layer thickness, inches (centimeters)
€ emissivity of panel-material surface, 0.76

7 dynamic viscosity of air, pounds (mass) per foot-second (newton-
seconds per meter<)

p density of air, pounds (mass) per foot3 (kilograms per meter3)

P density of skin material, 515 pounds (mass) per foot3 (8250 kilograms
per meter3)

o Stefan-Boltzmann constant, 4.78 x 10~13 British thermal units %)er
foot®-second-degrees Rankine4 (5.67 x 10-8 watts per meters-
degrees Kelvin4)

T time, seconds

Subscripts:

l local conditions

o} reference panel conditions (smooth surface)
w wall or skin

oc free stream

DESCRIPTION OF TESTS AND INSTRUMENTATION

The X-15 airplane, shown in figure 1, was launched from a B-52 carrier aircraft
at about 45,000 feet (13,700 meters) altitude, climbed under full power to the desired
altitude, and attained level flight at reduced throttle with speed brakes extended to
stabilize the velocity. The data for this experiment were taken during the period of
quasi-steady flight just prior to fuel depletion. The final portion of the flight was a
glide back to a landing at Edwards Air Force Base, Calif.

The Inconel X test panels used in the experiment were on the lower surface of the
fuselage, 28 feet (8.5 meters) aft of the nose. The panels were exposed to aerodynamic
heating throughout the entire flight. Figure 2 shows the location of the protuberance
panel and the smooth reference panel on the airplane. The forward edge of the panels
was approximately 12 inches (30 centimeters) aft of the liquid-oxygen tank. The protu-
berance geometry, instrumentation, and dimensions for the step configuration and the
wave configuration are shown in figures 3 and 4, respectively. The smooth reference
panel was instrumented with one central thermocouple. The thermocouples were
30-gage chromel-alumel wires, spot-welded to the inner surface of the panel. The re-
cording system sampled the thermocouple data 2.5 times per second,



Airplane velocity and altitude were obtained from a radar tracking system. Free-
stream temperature, pressure, and wind corrections for velocity were obtained from
balloon soundings. Airplane attitudes were obtained from the X-15 inertial guidance
system and flow-direction sensor. Time histories of pertinent parameters starting
from launch are shown in figure 5 for flight A (step configuration) and in figure 6 for
flight B (wave configuration). The data time intervals used in this report are shown in
figures 5 and 6 by the cross hatched areas. The data listings in tables I through IV have
their data time referenced to the data time interval used.

DATA REDUCTION

The heat-transfer coefficients presented in this report were determined by using
the following equation:

2
h = pWCp,Wtw a ] oeFT,, kto\ gx2

(TR - Ty) (T - Tw) (T - Tw)

(144) (1)

where the numerator of the first term is the heat stored in a unit area of the surface,
the numerator of the second term is the heat reradiated to the atmosphere, and the
numerator of the last term is the heat gained or lost by conduction in the skin. The
factor 144 in the conduction term is needed to maintain unit consistency. The properties
of the skin are known, the wall temperature and rate of change of wall temperature are
measured, and the recovery temperature is calculated by using a recovery factor of
0.89. Heat-transfer coefficients were calculated using equation (1) at data time

2.8 seconds,.

The first two terms of equation (1) were calculated with a digital computer, using

ar
a least-squares-curve fit to determine dTW . The second derivative in the correction

factor was obtained by plotting the streamwise temperature distribution, fairing a
smooth curve through the points, and graphically determining the slope at each point on
the curve to obtain the first derivative. The first derivative was then plotted as a
function of streamwise distance, a smooth curve faired through the points, and the slope
graphically determined at each point along the curve to obtain the second derivative.
Finally, the second derivative was plotted against streamwise distance, and a smooth
curve was faired through the points. Values for the second derivative used in the cor-
rection factor were taken from the final smooth curve. Figures 7(a), (b), and (c) show
the temperature distribution and the first and second derivatives for a representative
portion of the sine-wave test panel. For purposes of the conduction correction on the
step configuration only, the distance along the surface of the step was used instead of

the streamwise distance. Thermocouples 11a, 11b, 11lc, 20a, 20b, and 20c on the verti-
cal faces of the step were used to correct the heat-transfer data for conduction at thermo-
couples 11, 12, 20, and 21 but were not included in the heat-transfer distribution.

The following assumptions were made in the analysis of the data:

1. The smooth-surface recovery temperature TR was assumed to apply in the
vicinity of the protuberances.



2. Two-dimensional flow was assumed.

3. Internal radiation loss was neglected. Heat loss due to internal radiation was
minimized by gold-plating the internal surface of the panels.

4. Lateral temperature gradients on the panels were negligible.

5. The streamwise temperature distribution along the smooth reference panel was
constant, represented by the single reference thermocouple in the center of the panel.
(I'light experience indicates that a negligible streamwise temperature variation would
occur over a panel of this size.)

6, The local flow conditions were essentially the same as free-stream conditions
for the test-panel location on the airplane. (A large amount of unpublished data
obtained in this area indicates that this is a valid assumption.)

The estimated accuracy of the temperature data was +13 Rankine degrees
(17. 2 Kelvin degrees), and the overall accuracy of the heat-transfer coefficients (before
conduction correction) was estimated to be +10 percent. The conduction correction
varied from 0 to 40 percent, based on the approximate method used in determining the
second derivative. The maximum heat loss due to radiation to the atmosphere (second
term of equation (1)) was 13. 5 percent of the convective heating rate.

Boundary-layer thicknesses were computed by using the method of reference 3
together with turbulent boundary-layer parameters obtained from reference 4, assuming
a one-seventh power velocity-distribution law. No attempt was made to account for the
effect of the large surface temperature gradient between the liquid-oxygen tank (ap-
proximately 160° R) and the test panels (approximately 1000° R),

DISCUSSION OF RESULTS

Pertinent flight parameters for the 0.20-inch (0. 51-centimeter) forward-and-aft-
facing step configuration are presented in table I. Temperature time histories of the
thermocouple positions for the corresponding time interval are included in table II. The
temperature distribution at the time heat-transfer data were reduced is shown in
figure 8. The distribution of the heat-transfer ratio th is shown in figure 9. The
pecak heat-transfer ratio ahead of the protuberance was 2. 23, and the peak behind the
protuberance was 1,44, The lowest value of the ratio was 0. 09 at the aft edge of the
step. The figure shows the significant correction that had to be made to the heat-
transfer data for conduction error as a result of the high-temperature gradients along
the panel. It is apparent from both figures 8 and 9 that the aerodynamic heating in the
vicinity of the step is affected by the step more than eight step heights upstream and
downstrean.

Table IIT contains the flight parameters for the 0.20-inch (0. 51-centimeter) sine-
wave corrugation and table IV presents the temperature time histories for the thermo-
couple positions. Figure 10 shows the temperature distribution at the time the heat-
transfer data were reduced, The distribution of the heat-transfer ratio across the panel
is shown in figure 11. The values of the heat-transfer ratio ranged from 0. 34 to 2. 03
and, as with the step configuration, a significant conduction correction was necessary.



It is interesting to note that when the heat-flux distributions across both the step
and the wave configurations were integrated to determine the net heat flux into the
panels at the one point in time, the value was nearly the same for the protuberances as
for the smooth panel.

A comparison of flight and wind-tunnel heat-transfer-ratio distribution on a step
protuberance is shown in figure 12. The ratio of boundary-layer thickness to protu-
berance height for the flight data is considerably larger than the ratio for wind-tunnel
data. Although the levels vary considerably, the trends of the data are similar. One
exception is that the first peak in the wind-tunnel data just ahead of the step is seen
only as a slight change of slope in the flight data.

Figure 13 shows a comparison of flight and wind-tunnel data for a sinusoidal wave
train. Good agreement was obtained for the all-turbulent flight data and the turbulent
portion of the wind-tunnel data, even though there was a large difference in the ratio
of boundary-layer thickness to protuberance height.

The only available method for calculating the peak heating on a wave train, that of
Jaeck (ref. 5), was used and the results were compared with the peak value in the flight
data. The Jaeck method underpredicted the peak value by approximately 35 percent.

It is believed that the empirical nature of the method is the reason for its inadequacy

for % values greater than 1.

CONCLUDING REMARKS

Heat-transfer effects of separated flow were investigated in flight tests of two pro-
tuberance configurations on the X-15 airplane. The 0. 20-inch (0. 51-centimeter)
forward-and-aft-facing step and the 0, 20-inch- (0. 51-centimeter-) amplitude sine-wave
oriented at a right angle to the stream direction resulted in a local heat-transfer
variation of 0. 09 to 2,23 and 0, 34 to 2. 03 times the smooth surface value, respectively.

The net heat flux into the test panels was essentially the same as on the smooth
reference panel, even though there was a large variation of heat-transfer across the
panels.

Flight Research Center,
National Aeronautics and Space Administration,
Edwards, Calif., December 14, 1967,
126-13-03-01-24,



APPENDIX

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

Conversion factors for the units used in this report are given in the following table:

Physical quantity U.S. Customary Unit | Conversion factor SI Unit
W)

Heat-transfer coefficient Btu/ft2-sec—°R 2.042 x 104 J/m? -sec- K
Specific heat Btu/lbm—R 4.18 x 103 J/kg—K

ft 0.3048 m
Length in. 2.54 cm
Temperature °R 0.556 °K
Velocity ft/sec 0,3048 m/sec
Density Ibm/ £t3 16. 02 kg/ m3

*Multiply value given in U.S. Customary Unit by conversion factor to obtain
equivalent value in SI Unit.

Prefixes to indicate multiples of units are:

Prefix Multiple
centi (c) 10-2
hecto (h) 102
kilo (k) 103
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